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Abstract. This work deals with the optoelectronic properties of heterostructures built on type II
Si1−xGex/Si strained quantum wells grown on relaxed Si1−yGey/Si (001) pseudo-substrates. To limit
the intrinsic problem due to the real-space indirect nature of the interface, we propose and model three
heterostructures having three different potential profiles of the valence and conduction bands which con-
sist in various arrangements of Si and Si1−xGex barriers of different Ge contents. The proposed stacks are
designed in a pragmatic way for a pseudomorphic growth on relaxed Si1−yGey assuming individual layer
thickness being smaller than the known critical thickness and an overall compensation of the strain. Varia-
tion of thickness and compositions (x > y) permits to optimize i) the quantum confinement of electrons and
heavy-hole levels and ii) the wave function’s overlap and the out-of-plane oscillator strength. The optimum
parameters satisfy a fundamental emission at a key 1.55 µm wavelength below the absorption edge of each
layer constitutive of the stacks. A comparison between the characteristics of the three heterostructures
brings out the superior advantages of the W architecture.

PACS. 73.21.Fg Quantum wells – 73.20.At Surface states, band structure, electron density of states –
73.40.Gk Tunneling – 71.20.Nr Semiconductor compounds

1 Introduction

During the last decade, quantum heterostructures based
on semiconductor compounds have been extensively inves-
tigated to elucidate fundamental properties and to make
use into applied physics. Alloys of group-IV elements have
attracted a lot of interest for their high potential applica-
tions in the logic and analogic fields compatible with the
silicon CMOS (Complementary Metal Oxide Semiconduc-
tor) technology. They are now attracting more attention
not only to improve the already impressive performances
of electronic devices but also to realize new optoelectronic
ones based on related bulk and quantum heterostructures
or nanostructures [1,2]. For instance, alloys and ordered
compounds of elements IV (Si, Ge, C, and Sn) may have
specific band-structure properties useful for quantum-well
intraband and intersubband applications [3,4]. Already,
in spite of the k-space indirect nature of the bandgap,
the SiGe/Si system offers the possibility to realize various
optoelectronic devices operating in the visible, the near
infrared and even the far infrared region [5]. Such devices
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could be integrated in Si-based electronic circuits, merg-
ing the advantages of VLSI (very-large-scale-integration)
CMOS technology and the field of optical fiber communi-
cation [6].

In strained Si1−xGex/Si(001) quantum heterostruc-
tures, the fundamental bandgap can be tuned, in prin-
ciple, to the 1.3–1.55 µm wavelength region. This makes
this system interesting for photodetection and emission
at wavelength where silica optical fibers possess mini-
mal attenuation. For emission, complex heterostructures
and nanostructures, such as SinGem zone-folded super-
lattices [7] and Ge/Si quantum dots [8] have been stud-
ied and developed to overcome the indirect nature of the
bandgap. However, quantum engineering based on the
Si1−xGex/Si(001) strained system first suffers from the
low conduction band-offset and the real-space indirect na-
ture of the interface. This type II alignment of the con-
duction and valence bands results in non-confinement for
electrons. More, large quantum well (QW) widths, close
to the critical thickness for a pseudomorphic growth of a
Si1−xGex (0.25 < x < 0.30) layer on silicon, are needed
to reach a 1.3 µm emission gap [1]. Thus, the pioneering
idea of Nayak et al. [9] has prompted Usami et al. to sug-
gest adjacent Si/Si0.64Ge0.36 electron-hole QWs embed-
ded in relaxed Si0.82Ge0.18 buffer layers [10]. The latter
QWs stack for which a strain-balance is achieved with
equal thickness of the Si and SiGe layers emits at 1.3 µm.
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For such neighboring (N) QWs, the overlap of the elec-
tron and hole wave functions is still low. In that aim, we
have recently proposed a triple Si/Si1−xGex/Si electron-
hole-electron QWs embedded in relaxed Si1−yGey barri-
ers [11]. This strain-compensated stack (x > y) presents
a W-like scheme of the potential profile of the conduc-
tion and valence bands, leading to quasi-type I QW. In
the past years, this design has been successfully imple-
mented to realize lasers diodes based on the III/V an-
timony type II system (see [12] and references therein).
In the present paper, this “W” generic Si/Si1−xGex/Si
stack of layers of thickness d1/d2/d1 is compared with
the “N” Si/Si1−xGex (2d1/d2) neighbouring QWs and an
additional Si1−xGex/Si/Si1−xGex (0.5d2/2d1/0.5d2) het-
erostructure having an “M”-like scheme of the poten-
tial profile, indeed an inverted W structure. The overall
Si (2d1) and SiGe (d2) thickness are kept identical in order
to satisfy the same strain-balance criterion for both N, W
and M arrangements built-on the same (x, y) couple of
compositions. In Section 2, different conditions regarding
the critical thickness, the strain-balance rule, the band dis-
continuities, the bandgap and the absorption band-edges
are discussed to set-up the domain of compositions for
the layout of the three structures. For N, W and M struc-
tures designed with the optimal set of active layer and
substrate concentrations x and y, the quantum confine-
ment of electrons and heavy-holes levels, the emission en-
ergy, the wave-function overlap and the oscillator strength
of the fundamental transition are presented in Section 3.
The discussion deals with a comparative study of N, W
and M stacks emitting at 1.55 µm and/or having the same
nominal thickness d1 and d2.

2 Composition of strained Si/Si1−xGex/
Si1−yGey quantum well structures

The germanium content x in strained Si1−xGex and y
in relaxed substrate Si1−yGey is the essential engineer-
ing tool for designs based on Si/SiGe heterostructures.
In fact, for Si/Si1−xGex/Si1−yGey strained/relaxed stack
of layers, the values of the different band gaps, band off-
sets and effective masses are controlled by x and y com-
positions. First, the gap of relaxed Si1−yGey (001) alloy
for 0 < y < 0.85 is given by E∆

g (y) = 1.171 − 0.43y +
0.206y2 [13]. Then, the uniaxial strain splits the ∆ con-
duction band in the active zone of structure, in two val-
leys, denoted ∆2, along (001) direction of the momentum
space and four valleys along (100) and (010) directions de-
noted ∆4. For the strained Si1−xGex on relaxed Si1−yGey

heterointerface, the following first-order approximations of
the analytical laws for the conduction and valence-band
discontinuities between strain-splitted valleys have been
established [14] in the framework of the model-solid the-
ory of Van de Walle et al. [15]:

∆E∆2−∆
C

∼= (x − y)[0.337 + 0.206(x + y) (1)
+ (0.212 + 0.245x)(1 + 0.138(x + y))]

∆E∆4−∆
C

∼= (x − y)[0.337 + 0.206(x + y)
− (0.386 − 0.261x)(1 + 0.138(x + y))] (2)

∆Ehh
v

∼= (x − y)[0.767 + (0.027 + 0.098x)
(1 + 0.138(x + y))] (3)

where ∆E∆2−∆
C , ∆E∆4−∆

C are the energy gaps between
potential energies for ∆2 or ∆4 band and conduction band
of relaxed layers ∆. ∆Ehh

v is the energy gap between po-
tential energy values for heavy-holes. For Si under tensile
strain on relaxed Si1−yGey, the relation:

∆Elh
v

∼= 0.437y − 0.099y2 (4)

is a good empirical approximation giving the light holes
band-offset.

The mentioned equations (1–3) are rightfully for
strained field presentation in Si/Si1−xGex/Si1−yGey su-
perlattice.

The important lattice mismatch between Si and Ge has
been found out reference [16,17]. It allows determination
of thickness limitations named the critical thickness hC

for the layers keeping the strain in the active zone of the
structure. For a realistic epitaxy, it is arbitrary assumed
that each layer forming the N, W and M structures have a
thickness below the critical thickness that corresponds to
a direct growth onto a relaxed Si1−yGey template. This as-
sumption on the thermodynamic stability of each individ-
ual strained layer is strictly valid for the first Si layer of the
N and W structure and for the first Si1−xGex layer of the
M structure. For that purpose, we took the law of critical
thickness given by Mathews and Blakeslee [18], which is
known pessimistic regarding the other models and the ex-
perimental data in semiconductor lattice-mismatched sys-
tems. Assuming a 60◦ threading dislocation generated at
Si1−xGex/Si1−yGey strained/relaxed heterointerface, the
critical thickness is given by:

hc =
b

4 π ε(x, y)
1 − ν/4
1 + ν

Ln
(

1 +
hc

b

)
, (5)

where the mismatch is defined by ε (x, y) = (a(x) −
a(y))/a(y) and the lattice parameters a(x) and a(y)
given in Å units are interpolated by 5.4311(1 −
x) + 5.6579x − 0.0275x(1 − x). In this formula,

ν =
C12

C11 + C12
=

0.650− 0.156 x

2.325− 0.516 x
is the Poisson ratio for

(001) orientation that is calculated assuming a compo-
sitional linear interpolation of the elastic stiffness coeffi-
cients Cij(x) given in reference [14]. b = a(x)

√
2/2 is the

Burger vector magnitude.
In order to optimize parameters of heterostructures

under investigation, x and y compositions of Ge in
strained and relaxed SiGe layers respectively, must con-
form to some conditions. To assure a realistic quantum
confinement for electrons and holes, namely, the potential
barrier heights ∆E∆−∆2

C in (Si) and ∆Ehh
v in Si1−xGex

layers should not be lower than 0.1 eV and 0.15 eV re-
spectively. So, conditions y > 0.170 and x > 0.2 + y
should be satisfied. Moreover, the type II gap E∆2−hh

gap

at Si/Si1−xGex should be lower than 0.8 eV to get
a fundamental e-hh emission at 1.55 µm. In addition,
this type II emission gap at 0.8 eV should not exceed
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Fig. 1. Boundary conditions defined by the Si critical
layer thickness (>7 nm), the Si1−xGex absorption band-gap
(>0.8 eV), a type II band-gap Eg(x, y) < 0.8 eV and the
band-offsets (>0.1 eV) setting up the (x, y) germanium frac-
tions for the design of the N, W and M heterostructures. A
solution of equation (6) is plotted for strain-balanced stacks
having 2d1/d2 = 1.4. The filled circle at x = 0.60 and y = 0.25
nearly gives the barycentre satisfying all the design rules.

the absorption edge of each constitutive materials lead-
ing to E∆4−hh

Gap [Si/Si1=xGex] > 0.8 eV (x < 0.53) and
E∆2−lh

gap [Si] > 0.8 eV (y < 0.57). Furthermore, a pseudo-
substrate composition y < 0.325 tolerates a critical thick-
ness of, at least, 7 nm of the strained Si layer, which is
sufficient for a good confinement of electrons [18]. On this
basis, numerical solutions of equations (1–3, 5) were used
to find out an (x, y) appropriate composition domain for
the design of the N, W and M structures (see Fig. 1).
In addition, it is assumed that the active zone of these
structures is equivalent to a single material whose average
composition is equal to the substrate composition y so
that the strain is compensated. Due to the successive ten-
sile and compressive strain-state of the individual layers,
it is possible to design the N (2d1, d2), W (d1,d2,d1) and
M (d2/2,2d1,d2/2) stacks within the assumption of full
strain compensation. Here d1 is the thickness of the well
in the W structure and d2 that of the barrier so that the
properties of the various structures can be compared. This

puts an additional constraint on the structure parameters
(x, y, d1, d2). From the three strain-balanced criteria given
by Ekins-Daukes et al. [19], we have derived the following
simplified formula:

y =
xd2

2d1 + d2
. (6)

Within the optimum domain of compositions (0.17 < y <
0.325, 0.38 < x < 0.76) set above, this calculation shows
that strain-compensated stacks can be designed as far as

0.27 <
d2

2d1 + d2
< 0.65.

So the optimal compositions achieving the fundamental
emission at a key 1.55 µm wavelength are x = 0.6 and
y = 0.25 [11] leading to d1/d2 = 0.7.

Finally, the transverse electron masses m⊥,∆
e

∼= 0.20
for relaxed Si1−yGey, as well as m⊥,∆4

e
∼= 0.33 (x > y) and

m⊥,∆2
e

∼= 0.20 (x < y) masses for strained Si1−xGex on
relaxed Si1−yGey are nearly independent on the composi-
tions, according to the empirical pseudopotential calcula-
tions of Rieger and Vogl [20]. The first-order developments
in energy of the solutions of the 6 × 6 k.p Hamiltonian,
given by People and Sputz [21], were used to calculate the
hole masses. For relaxed Si1−yGey, the transverse light
hole mass is given by the empirical law:

m⊥
lh = 0.200− 0.590y + 1.135y2 − 1.127y3 + 0.429y4 (7)

while the transverse heavy hole mass is strain (y) inde-
pendent:

m⊥
hh = 0.291(1 − x) − 0.030x(1 − x) + 0.207x. (8)

For Si under tensile strain on relaxed Si1−yGey with
y > 0.2, m⊥

lh (Si) ∼= 0.17. For strained Si1−xGex (0.50 <
x < 0.70) under compressive strain on relaxed Si1−yGey

(0.20 < y < 0.30), m⊥
lh

∼= 0.12. All masses are given in
m0 unit, where m0 is the free electron mass.

3 Results and discussion

In this section, where the terms barriers and wells re-
fer to electron, we will compare and discuss the follow-
ing structures: (i) N-like design structure consisting in
two active layers, a silicon well and an Si0.4Ge0.6 bar-
rier, (ii) W-design structure which is composed of two Si
quantum wells (QWs) separated by an Si0.4Ge0.6 barrier
(i.e. three active layers) and (iii) M-like design structure
consisting in two Si0.4Ge0.6 barriers separated by a sili-
con well (i.e three active layers in a arrangement which
is the reverse of that of structure proposed in (ii)). In
each structure, the active region modeled above is em-
bedded between 20 nm Si0.75Ge0.25 relaxed layers (001).
The Si layers are under tensile strain in the three struc-
tures, while the Si0.4Ge0.6 layers are under compressive
strain. Consequently, the Si0.4Ge0.6 barriers have an op-
posed strain effect compared to the Si well. The compu-
tation of the wave functions, the electron and the heavy
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hole confined level energies of these heterostructures have
been carried out by solving the Schrödinger equation in
the effective mass approximation. In the one band version
of the envelope wave function approximation, the subband
energies for the conduction — and valence — bands can
be computed from the effective Hamiltonian:

Heff (z) = −�
2

2
d

dz

1
m∗(z)

d

dz
+ V (z) (9)

where z is the growth direction, m∗(z) is the effective mass
of free carriers and V (z) represents the total potential en-
ergy. We have included the following terms in V (z): the
potential energy VB(z) due to the band alignment, the
Hartree potential VH(z) and the exchange-correlation po-
tential VXC(z) induced by many body effects and whose
expression is taken from reference [14].

The thicknesses d2 and d1 have been calculated for
compositions x = 0.6 and y = 0.25. The optimisation
should result in finding the final set of parameters that
gives the best quantum confinement for electron and heavy
hole quantum levels; and a maximum overlap between
their respective wave functions. For y = 0.25 and x = 0.60,
we present in Figure 2 the electron and hole confinement
energies (plot a) and the emission energy of the funda-
mental transition e1 − hh1 (plot b) versus the barrier and
well thicknesses (d2 and d1 respectively). In the three
proposed structures both electron and heavy hole quan-
tum confinement energies increase with the thickness d2

(d1). While, as shown in Figure 2b, the emission energy
of the fundamental transition e1 − hh1 decreases with in-
creasing d2 (d1). To have an idea about the fundamental
e1 − hh1 transitions, we have calculated the out-of-plane
wave functions’ overlaps as a function of d2(d1). As can be
seen in Figure 3, wave functions’ overlap decreases with
increasing d2 for the three structures; however the M and
W like design present practically the same overlap, which
is larger than that of Usami structure. Another feature
of the electron transition is the oscillator strength. It is
defined from an initial state |φi〉 to a finite state |φf 〉 by
the relationship [22]:

fi→f =
2m0

�2
(Ei − Ef ) |〈φi | z|φf 〉|2 (10)

where m0 is the free electron mass, � is the Plank constant,
(Ei – Ef ) is the energy difference between the initial and
finite states and 〈φi |z| φf 〉 is the dipole matrix element
of the transition. Figure 4 shows the oscillator strength
of the fundamental e1 − hh1 transition as a function of
the thickness d2(d1) for the three studied structures. As
it can be seen, the oscillator strength is more important
in the W than the M and N-designs. This result can be
due to the density of probability in the conduction band
which is higher in the case of W as compared to the M
structure. This improvement can be explained by a tun-
nelling effect through the Si1−xGex barrier in structure W,
leading in real space, to a spatially quasi-direct interband
transition e1 − hh1, whereas this fundamental transition
reminds indirect in the M-design. We have then determine,
for the W structure, the optimum thicknesses d1 and d2

Fig. 2. (a) Heavy-hole (left-hand scale, opened symbols) and
electron (right-hand scale, filled symbols) confinement energies
as a function of the overall Si1−xGex (x = 0.60) layer thickness
d2 for the W (circles), M (squares) and N (triangles) QW het-
erostructures. The stacks are strain-compensated on relaxed
Si1−yGey (y = 0.25) and the topmost scale gives the corre-
sponding Si thickness d1. (b) Deduced evolutions of the energy
of the fundamental e1 − hh1 transition.

leading to 1.55 µm emission wavelength, while N and M
designs give, for the same active zone, an emission wave-
length of 1.66 µm and 1.44 µm respectively. The required
1.55 µm emission can be reached using N and M, with dif-
ferent set of parameters d1 and d2 as indicated in Table 1.
However, the oscillator strength is one order of magnitude
lower compared to the W structure. Figure 5 illustrates
the three strain compensated structures using the opti-
mum set of parameters d1 = 2.0 nm and d2 = 2.8 nm
which can be experimentally produced by using standard
epitaxial growth techniques. The wave functions and the
confinement energies are also depicted. In spite of differ-
ent emission gap close to 0.744 eV (N), 0.800 eV (W) and
0.858 eV (M), the indicated values of the overlaps and
oscillator strengths again reveal the advantage of the W
design.
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Table 1. Thickness of different N (2d1/d2), W (d1/d2/d1) and M (0.5d2/2d1/0.5d2) strain-balanced stacks (2d1/d2 = 1.4,
y = 0.25) built on Si and Si0.40Ge0.60 layers. The calculated electron, heavy-hole and overall confinement energies, wave-
function overlaps and oscillator strengths are given for each couple of thickness (d1, d2). The critical thickness hc of the Si and
Si0.40Ge0.60 strained layers are indicated in the upper left corner. The couples of thickness (d1, d2) are optimized for a 0.8 eV
fundamental e1 − hh1 transition of the W, N and M QWs. For comparison with the W structure, the characteristics of the N
and M stacks having d2 = 28.1 Å (d1 = 19.7 Å) are also given.

Si / Si0.40Ge0.60 / Si0.75Ge0.25

hc [Si] = 99.3 Å
hc [Si0.40Ge0.60] = 61.4 Å

N-Designed Structure
2d1 − d2

W-Designed Structure
d1 − d2 − d1

M-Designed Structure
d2/2 − 2d1 − d2/2

Wavelength (µm)
d1 [Si] (Å)
d2 [Si0.40Ge0.60] (Å)

1.61
19.7
28.1

1.55
14.6
20.8

1.55
19.7
28.1

1.55
25.3
36.2

1.4
19.7
28.1

Fe1 → hh1(x102)
|〈fe1 | fhh1〉|2(%)

3.2
17.5

5.4
28.7

43.7
43.8

4.0
29.8

7.0
41.4

e1 confinement energy (meV)
hh1 confinement energy (meV)
total confinement energy (meV)

100.5
215.5
316.0

80.6
179.7
260.3

51.7
208.6
260.3

116.5
143.8
260.3

102.9
99.1
202.0

 

 

Fig. 3. Overlaps of the fundamental wave functions of elec-
trons and heavy-holes for the W (circles), M (squares) and N
(triangles) strain-balanced stacks (x = 0.60 and y = 0.25) ver-
sus the overall Si0.40Ge0.60 thickness d2 and the related Si layer
thickness d1. The arrows indicate the overlaps at thickness re-
lated to a fundamental e1 − hh1 transition at 0.8 eV.

4 Conclusion

In summary, we have presented a theoretical work based
on the numerical resolution of Schrödinger’s equation.

 

 

Fig. 4. Oscillator strengths of the fundamental e1 −hh1 tran-
sitions of the W (circles), M (squares) and N (triangles) strain-
balanced stacks (x = 0.60 and y = 0.25) versus the Si0.40Ge0.60

thickness d2 and the related Si thickness d1. The arrows point
the oscillator strengths at thickness corresponding to funda-
mental e1 − hh1 emission energy of 0.8 eV.

This resolution allows calculating the confinement en-
ergies, the fundamental interband transitions, the wave
functions’ overlap as well as the oscillator strength. This
optimization leads to a quasi-type-I structure preserving
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Fig. 5. Conduction and valence band-edges minima for the N (a), W (b) and the M (c) designed QWs built on Si and Si0.40Ge0.60

strained layers. Each stack of thickness 2d1/d2 (N), d1/d2/d1 (W) and 0.5d2/2d1/0.5d2 is strain-balanced on relaxed Si0.75Ge0.25

setting 2d1/d2 = 1.4 (from Eq. (6)). For each heterostructure, e1 and hh1 quantum levels are drawn with their relative wave
functions. With d2 = 28.1 Å (d1 = 19.7 Å), the W stack is optimally designed for an emission gap at 0.8 eV while the e1 − hh1

transition gaps are 0.744 eV and 0.858 eV for the N and M stacks, respectively.

the advantage of type-II QWs namely, an effective band
gap below the absorption edge of the constitutive materi-
als. For the desired 0.8 eV emission energy, the optimized
W strained compensated heterostructure is compared to
N and M like designs. This optimization proves the higher
efficiency of W structure over the others permitting the
realization of optoelectronic devices in Si/Ge system emit-
ting at a key 1.55 µm wavelength.
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